3.1 磷石膏
自然界中,稀土元素(稀贵重金属的一类)通常与磷酸盐矿床有关,作为化肥工业生产磷酸过程的一种废物稀土元素,磷石膏(PG)是的稀贵重金属的一个潜在来源[54].其次,工业上常通过湿法消化磷矿来生产磷酸,该方法存在多变性,其中的二水合物过程可能会导致磷矿进料中70–80%的稀土元素迁移到PG废物流中,甚者,其他工艺(半水合物、半二水合物过程)可能导致PG含有超过95%的原始稀土元素[55].研究表明,PG中的大部分的稀土元素可能以二次相形式吸附在石膏表面的稀土磷酸盐的形式出现,与被结合到晶格中的元素先比,该情况下的PG会相对容易通过化学试剂进行提取[56].作为一个化工生产过程的副产物,磷石膏中的稀土元素尽管相对含量低,但是这种稀土来源具有“不存在开采来源、不需要开采成本、不发生稀土元素失活和不含天然放射性核素”的优点,而现在的处理技术多是酸浸出,且稀土元素产物多以混合物形式存在.因此,对磷石膏中稀土元素的提取可以在浸出剂以及元素分离技术进行进一步的研究.
3.2 粉煤灰
焚烧处理城市固体废物垃圾只需要相对较小的土地面积就可以大大降低其体积和质量(分别高达90%和70%),然而,城市生活垃圾焚烧导致燃烧残余物(粉煤灰)的产量不断增加[57].粉煤灰是一种铝硅酸盐玻璃,它所含的稀贵重金属主要是Zn、Pb、Hg、Cu、Cr、Cd、Ni等,其中Zn和Pb含量最高,是一种极具潜力的稀贵重金属的提取原料[58]. 根据2013年的价格,粉煤灰的REEs年总价值估计为43亿美元,其中稀土的回收可能代表了一个有价值的和可持续的替代使用过剩的粉煤灰废物[59].但是,从粉煤灰中回收稀土元素时,要充分考虑可持续性、可扩展性以及选择性.用强酸、强碱处理回收稀土元素不仅消耗大量化学物质,回收率也未能达到高效率.因此,之后的粉煤灰中元素提取可以考虑采用离子液体萃取、离子交换树脂等的方法.
3.3 铝土矿渣
铝土矿渣是拜耳法生产铝过程中所产生的固体残渣.研究表明,每生产1吨氧化铝约产生0.7-2吨铝土矿渣,全球铝土矿渣年产量约为1.4亿吨[60, 61].因为铝土矿中存在的稀土元素与在拜耳法中保持不变的铁和钛矿物有关,因此,它们最终以2倍的浓缩系数存在于铝土矿残渣中[62].在赤泥中存在的不同稀土元素中,钪是最具战略意义的一种元素,因为它缺乏与成矿阴离子结合的亲和力, 所以在自然界中很少富集,这使铝土矿渣成为该元素的合适来源.铝土矿中的稀土元素主要呈现分散分布于一水硬铝石,高岭石等矿物中,而明显富集主要是在赤泥中,并且是以氢氧化物沉淀的形式存,对稀土矿渣中稀土元素的提取为矿渣的综合利用开辟一条新的途径,在取得好的经济效益的同时又可以实现社会效益和环境效益的协调发展.目前对铝土矿渣的稀土元素提取多采用酸浸(硫酸、盐酸、硝酸),再通过溶剂萃取进行富集和提纯,难免在酸浸这一步带来较大的酸量消耗,经济性不高.从铝土矿渣的具体成分出发(高含量的氧化钙、二氧化硅和氧化铝),在进行酸浸之前,将矿渣配成一定固液比的吸附剂,通过吸收一些酸性污染气体来先降低矿浆的酸度,以减少酸的大量使用,同时还使废气得到处理.
3.4 煤矸石
煤矸石中存在大量的有价元素(如硅、铝、铁、钙等)和微量元素,此外还包括稀有元素(钒、钛、钴等).对煤矸石中的有价元素进行富集、提取是煤矸石深度开发利用的一个重要方向[63].当煤矸石某种元素或者几种元素富集到具有工业价值时就可以进行综合利用,用于生产高附加值的化工产品,使得煤矸石变废为宝,在资源匮乏的今天十分有现实意义.进一步的研究,除了不断提煤矸石中稀土元素的回收率之外,可以从实际应用的目的出发,因地制宜的、有针对性的开展研究,充分利用煤矸石资源.
3.5 电子废弃物
电子产品中会用到各种稀贵重金属,因此,在达到使用寿命后这些电子产品用作稀贵重金属来源进行元素提取,包括普通金属(如铝、铜、铁、铅、镍、锡和锌)、贵金属(金、银、铂和钯)和特殊金属(如钴、硒、铟;稀土元素等)[64].手机、电脑等家电及电子产品不断更新换代导致了大量电子废弃物产生,其中的电子元件含有各类的稀贵金属,1吨电子板处理后可以得到约130公斤铜、0.45公斤黄金等.另外,电子废弃物中的稀贵金属含量高于原矿石中的含量,并且从电子废弃物中回收比矿石中的成本低,极具经济效益.常见的元素浸出方式为化学试剂浸出、超临界液体浸出,而生物法浸出的研究少之又少.
4. 稀贵重金属浸出的优化
为了进一步获取更大回收率和洗过重金属的纯度,需要不断的优化浸出方法,可以从以下方面入手:控制速率浸出、磁场电场强化浸出、超声波强化浸出、新浸出剂(离子液体、混合铵盐)、助浸剂等.
4.1 预处理优化
通过机械活化和化学活化的方法来提高固废中稀土浸出效率[65].机械活化使固废中的晶格发生变形,强化固废重结晶过程.因此,杂质(包括稀土元素)从固废中的晶格中被去除.向悬浮液中添加吸附剂会导致化学活化,吸附剂的存在允许从溶液中消除稀土离子,这导致浓度梯度的增加,为微溶稀土化合物的溶解提供条件[66].另外,为了更好的提取稀土元素,可以先从废料中获得稀土精矿.Ines Hammas-Nasr等人[41]用25g/l的氯化钠溶液洗涤磷石膏,然后用碳酸钠溶液在90℃下浸提残渣1小时,电感耦合等离子体质谱结果显示,稀土在中间残渣中的富集度约为81%,用碳酸溶液处理不仅可以减小残渣粒度,还可以消除额外的杂质,从而将稀土富集提高到84%,光致发光技术的结果也证实,在重结晶碳酸钠中,存在稀土元素(Ce3+和Eu3+).
固废中的稀贵土元素多存在于物质的晶格中,直接对其进行浸出的效果会受到限制。因此,之后的研究可以通过机械活化对固废中物质的晶格应力和结构进行破坏,以此降低元素之间的强弱强度和结构的稳定性,增强物质的反应活性来提高元素的浸出性能。化学活化通过化学药剂性质不同来对物质中的稀土元素存在状态进行调整,使其成为可以更好溶于浸出剂,这个方法中我们可以对化学药剂进行进一步探索和发现。
4.2 浸出优化
近年为了进一步浸出稀贵重金属,研究人员也在浸出过程的场条件进行调控,主要是考虑到金属价态的改变,以便得到想要获取的金属氧化物.电力是一种清洁能源,通过电场条件的改变实现金属氧化价态的控制,Fu等人用次氯酸钠处理标准钼精矿,电氧化条件控制后钼的浸出率和电流效率分别为98%和36%[67].Zuohua Liu等人通过电氧化对钒渣中尖晶石进行破坏使得钒元素得以释放,后期的浸出更容易,电场的作用如图1所示[68].电磁等外力对物质不仅使元素的存在状态改变,而且可以应用在对稀贵重金属的分离上,利用金属不同的电磁性来得到纯度更高的稀贵重金属.
离子液体(ILs)由于其独特的特性(阻燃性、高选择性和可以忽略的蒸汽压)而被认为是传统溶剂的“绿色”替代品[69].ILs的物理化学性质可以通过组成ILs的离子对的组合进行调节,使其适用性更广[70].最近,为了扩大了离子液体在金属萃取中的应用,研究人员开始致力于开发与疏水性离子液体相容的萃取剂[71].另外,ILs主要用于混合稀土元素的分离步骤,其可以改变稀土元素在相中的分配系数,以达到分离目的.Khodakarami等人[72] 利用合成的[OcGBOEt][DHDGA]和[A336][DHDGA]提取几种稀土元素,在这项工作中的重、轻稀土元素实现了高选择性回收. 因此,固废中稀贵重金属提取是可以通过合成具有选择性的离子液体的方式的.
5. 展望
近年来,在湿法冶金的基础上稀贵重金属的提取研究不断改善,研究者利用有机萃取剂、离子液体、超临界液体等物质载体提取固废这种“二次资源”中的稀贵重金属元素,以此得到高附加值固废产物.接下来的研究可以放在对稀贵重金属的选择性提取上,利用不同稀贵重金属在浸出液中的差异性选择性浸提,合成对某元素特殊吸附、络合的液体或者吸附剂对稀贵重金属富集提纯.对于固废中稀贵重金属含量问题的考虑,未来可以对固废进行预处理(机械活化、化学活法、微波活化)以减少后面处理过程中试剂的消耗.总结起来如下:
(1) 对浸出液进行进一步的选择性元素提取,用固体无机或混合纳米吸附剂对稀贵重金属快速合理吸附,负载有机配体的吸附剂、具有磁性的吸附剂已逐渐应用在稀贵重金属的提取.
(2) 生物法在稀贵重金属提取上的技术已经比较成熟,该技术的应用于微生物状态密切联系,除了考虑微生物的常规外界条件,未来研究可以通过在微生物生活的液态环境加入“场”,一方面刺激微生物,另一方面利用稀贵重金属中某元素的电磁性质进行分离提纯.
(3) 湿法提取稀贵重金属的研究一直在继续,研究人员的目光开始聚集在“绿色、经济、安全”的提取方法上,用“离子液体”代替有机萃取剂,利用超临界(超临界水、超临界CO2)的可调状态萃取稀贵重金属元素.
6. 结论
固废在一定条件下可以作为资源进行重新利用,固废的处理是关乎生存环境和持续化发展的重要课题.为符合“减量化、再利用、再循环”的要求,近年来固废常因其中存在的稀贵重金属元素而受到关注,但是目前的研究大多是元素回收率提高的研究,而对于固废中某一种或某几种元素的选择性研究较少.因此,研究人员需要在已有技术的基础上进一步深究如何更好地对相邻稀土元素提取并分离.稀土金属离子在大小上类似于磷灰石晶格中的钙离子和代用钙离子,想要对其进行提纯,除了考虑萃取剂的应用,还可以通过机械活化、化学活化、浸提剂和超临界水、超临界CO2的结合使用、加入场调控的实验方法.
致谢:感谢国家重点研发计划“非常规湿/热生产典型副产物清洁加工生态链接技术”(项目编号:2018YFC1900203)的大力支持,提供了思路支撑和理论支持,也为后续研究提供了方法依据和技术设备。
参考文献
[1] Cai W, Liu F, Zhou X, et al. Fine energy consumption allowance of workpieces in the mechanical manufacturing industry [J]. Energy, 2016, 114: 623-633.
[2] Mazumder N A, Rano R. An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone [J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 359-365.
[3] 于可利. 废弃电器电子产品中的稀贵金属回收利用 [J]. 资源再生, 2016, (01): 46-48.
[4] 周廷熙. 稀贵金属二次资源回收工艺的清洁化升级综述 [J]. 贵金属, 2020, 41(S1): 114-119.
[5] Gao X, Jiang L, Mao Y, et al. Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings [J]. Adsorption Science & Technology, 2021, 2021: 1-13.
[6] Rafieizonooz M, Mirza J, Salim M R, et al. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement [J]. Construction and Building Materials, 2016, 116: 15-24.
[7] Zhao Y, Wang S, Li Y, et al. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield [J]. Geoderma, 2019, 352: 13-21.
[8] Qihua Y. TREND OF DEVELOPMENT OF LARGE-SCALE COPPER MINES [J] [J]. Nonferrous Metals (Mineral Processing Section), 2007, 6.
[9] 唐刚, 杨亚东, 刘梦茹, et al. 铜渣资源化利用现状及展望 [J]. 化工矿物与加工: 1-6.
[10] Yang X, Zhang Y, Bao S, et al. Separation and recovery of vanadium from a sulfuric-acid leaching solution of stone coal by solvent extraction using trialkylamine [J]. Separation and Purification Technology, 2016, 164: 49-55.
[11] Wang F, Zhang Y, Liu T, et al. A mechanism of calcium fluoride-enhanced vanadium leaching from stone coal [J]. International Journal of Mineral Processing, 2015, 145: 87-93.
[12] Yahorava V, Bazhko V, Freeman M. Viability of phosphogypsum as a secondary resource of rare earth elements; proceedings of the XXVIII International Mineral Processing Congress Proceedings, F, 2016 [C].
[13] Uugwanga M N, Kgabi N A. Assessment of metals pollution in sediments and tailings of Klein Aub and Oamites mine sites, Namibia [J]. Environmental Advances, 2020, 2: 100006.
[14] Habashi F. The recovery of the lanthanides from phosphate rock [J]. Journal of Chemical Technology and Biotechnology Chemical Technology, 1985, 35(1): 5-14.
[15] Habashi F. Extractive metallurgy of rare earths [J]. Canadian metallurgical quarterly, 2013, 52(3): 224-233.
[16] Stone K, Bandara A, Senanayake G, et al. Processing of rare earth phosphate concentrates: a comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements [J]. Hydrometallurgy, 2016, 163: 137-147.
[17] Kandil A, Aly M, Moussa E, et al. Column leaching of lanthanides from Abu Tartur phosphate ore with kinetic study [J]. Journal of Rare Earths, 2010, 28(4): 576-580.
[18] Walawalkar M, Nichol C K, Azimi G. Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4 [J]. Hydrometallurgy, 2016, 166: 195-204.
[19] Cánovas C, Chapron S, Arrachart G, et al. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials [J]. Journal of Cleaner Production, 2019, 219: 225-235.
[20] Innocenzi V, Ippolito N M, De Michelis I, et al. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: experimental design, optimization of acid leaching process and process analysis [J]. Journal of environmental management, 2016, 184: 552-559.
[21] Xiang J, Huang Q, Lv X, et al. Extraction of vanadium from converter slag by two-step sulfuric acid leaching process [J]. Journal of Cleaner Production, 2018, 170: 1089-1101.
[22] Ozgur C, Coskun S, Akcil A, et al. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps [J]. Waste management, 2016, 57: 215-219.
[23] Taggart R K, Hower J C, Hsu-Kim H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash [J]. International Journal of coal geology, 2018, 196: 106-114.
[24] Wang Z, Dai S, Zou J, et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction [J]. International Journal of Coal Geology, 2019, 203: 1-14.
[25] Ruşen A, Sunkar A, Topkaya Y. Zinc and lead extraction from Çinkur leach residues by using hydrometallurgical method [J]. Hydrometallurgy, 2008, 93(1-2): 45-50.
[26] Fedje K K, Ekberg C, Skarnemark G, et al. Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods [J]. Journal of hazardous materials, 2010, 173(1-3): 310-317.
[27] Lee S-h, Kwon O, Yoo K, et al. Removal of Zn from contaminated sediment by FeCl3 in HCl solution [J]. Metals, 2015, 5(4): 1812-1820.
[28] Safiulina A, Matveeva A, Evtushenko A, et al. Recovery of lanthanides from digested phosphogypsum solutions using a new organophosphorus extractant, 5-(diphenylphosphoryl) hexan-3-one [J]. Russian Journal of General Chemistry, 2015, 85(9): 2128-2134.
[29] Cánovas C R, Pérez-López R, Macías F, et al. Exploration of fertilizer industry wastes as potential source of critical raw materials [J]. Journal of Cleaner Production, 2017, 143: 497-505.
[30] Hérès X, Blet V, Di Natale P, et al. Selective Extraction of Rare Earth Elements from Phosphoric Acid by Ion Exchange Resins [J]. Metals, 2018, 8(9): 682.
[31] Ang K L, Li D, Nikoloski A N. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins [J]. Hydrometallurgy, 2017, 174: 147-155.
[32] Virolainen S, Repo E, Sainio T. Recovering rare earth elements from phosphogypsum using a resin-in-leach process: Selection of resin, leaching agent, and eluent [J]. Hydrometallurgy, 2019, 189: 105125.
[33] Zaganiaris E J. Ion exchange resins and adsorbents in chemical processing [M]. BoD-Books on Demand, 2016.
[34] Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides — A review [J]. Hydrometallurgy, 2006, 84(1-2): 81-108.
[35] Castro L, Blázquez M L, González F, et al. Bioleaching of Phosphate Minerals Using Aspergillus niger: Recovery of Copper and Rare Earth Elements [J]. Metals, 2020, 10(7): 978.
[36] Mu W, Cui F, Xin H, et al. A novel process for simultaneously extracting Ni and Cu from mixed oxide-sulfide copper-nickel ore with highly alkaline gangue via FeCl3∙ 6H2O chlorination and water leaching [J]. Hydrometallurgy, 2020, 191: 105187.
[37] Li L, Hu J-h, Wang H. Application of the chloridizing roasting method for the removal of copper and sulphur from copper slags [J]. Mineral Processing and Extractive Metallurgy, 2018, 127(1): 49-55.
[38] Abreu R D, Morais C A. Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents [J]. Minerals Engineering, 2014, 61: 82-87.
[39] Yoon H-S, Kim C-J, Chung K-W, et al. Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: Waste recycling strategies for permanent magnet processing [J]. Hydrometallurgy, 2016, 165: 27-43.
[40] Battsengel A, Batnasan A, Narankhuu A, et al. Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation [J]. Hydrometallurgy, 2018, 179: 100-109.
[41] Hammas-Nasri I, Horchani-Naifer K, Férid M, et al. Production of a rare earths concentrate after phosphogypsum treatment with dietary NaCl and Na2CO3 solutions [J]. Minerals Engineering, 2019, 132: 169-174.
[42] Hammas-Nasri I, Horchani-Naifer K, Férid M, et al. Rare earths concentration from phosphogypsum waste by two-step leaching method [J]. International Journal of Mineral Processing, 2016, 149: 78-83.
[43] Matjie R H, Bunt J R, van Heerden J H P. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal [J]. Minerals Engineering, 2005, 18(3): 299-310.
[44] Liu C, Xia J, Fan H, et al. Ti leaching differences during acid leaching of coal gangue based on different thermal fields [J]. Waste Manag, 2020, 101: 66-73.
[45] Sokić M, Stojanović J, Božić D, et al. Investigation of the optimal technology for copper leaching from old flotation tailings of the copper mine bor (Serbia) [J]. Metallurgical and Materials Engineering, 2020, 26(2): 209-222.
[46] Nadirov R K. Recovery of Valuable Metals from Copper Smelter Slag by Sulfation Roasting [J]. Transactions of the Indian Institute of Metals, 2018, 72(3): 603-607.
[47] Rodriguez Rodriguez N, Onghena B, Binnemans K. Recovery of Lead and Silver from Zinc Leaching Residue Using Methanesulfonic Acid [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19807-19815.
[48] Jiang G-m, Peng B, Liang Y-j, et al. Recovery of valuable metals from zinc leaching residue by sulfate roasting and water leaching [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1180-1187.
[49] Reid S, Tam J, Yang M, et al. Technospheric mining of rare earth elements from bauxite residue (red mud): Process optimization, kinetic investigation, and microwave pretreatment [J]. Scientific reports, 2017, 7(1): 1-9.
[50] Siddiqui A F, Yuksekdag A, Tuncay G, et al. Effect of solution chemistry on filtration performances and fouling potential of membrane processes for rare earth element recovery from red mud [J]. Environmental science and pollution research international, 2021.
[51] Pavon S, Lorenz T, Fortuny A, et al. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching [J]. Waste Manag, 2021, 122: 55-63.
[52] Lie J, Liu J-C. Selective recovery of rare earth elements (REEs) from spent NiMH batteries by two-stage acid leaching [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106084.
[53] Artiushenko O, Zaitsev V, Rojano W S, et al. Rationally designed dipicolinate-functionalized silica for highly efficient recovery of rare-earth elements from e-waste [J]. Journal of hazardous materials, 2021, 408: 124976.
[54] Emsbo P, McLaughlin P I, Breit G N, et al. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? [J]. Gondwana Research, 2015, 27(2): 776-785.
[55] Wu S, Wang L, Zhao L, et al. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes–A critical review [J]. Chemical Engineering Journal, 2018, 335: 774-800.
[56] Shivaramaiah R, Lee W, Navrotsky A, et al. Location and stability of europium in calcium sulfate and its relevance to rare earth recovery from phosphogypsum waste [J]. American Mineralogist, 2016, 101(8): 1854-1861.
[57] Fellner J, Lederer J, Purgar A, et al. Evaluation of resource recovery from waste incineration residues–The case of zinc [J]. Waste Management, 2015, 37: 95-103.
[58] Zhang Y, Ma Z, Fang Z, et al. Review of harmless treatment of municipal solid waste incineration fly ash [J]. Waste Disposal & Sustainable Energy, 2020, 2(1): 1-25.
[59] Stoy L, Diaz V, Huang C H. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid [J]. Environ Sci Technol, 2021, 55(13): 9209-9220.
[60] Evans K. The history, challenges, and new developments in the management and use of bauxite residue [J]. Journal of Sustainable Metallurgy, 2016, 2(4): 316-331.
[61] Kumar S, Kumar R, Bandopadhyay A. Innovative methodologies for the utilisation of wastes from metallurgical and allied industries [J]. Resources, Conservation and Recycling, 2006, 48(4): 301-314.
[62] Reid S, Tam J, Yang M, et al. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment [J]. Scientific reports, 2017, 7(1): 15252.
[63] 徐红艳, 孙培梅, 童军武. 煤矸石中有价元素的提取 [J]. 湖南冶金, 2006, (05): 39-43.
[64] Marra A, Cesaro A, Belgiorno V. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes [J]. Environmental science and pollution research international, 2019, 26(19): 19897-19905.
[65] Rychkov V N, Kirillov E V, Kirillov S V, et al. Recovery of rare earth elements from phosphogypsum [J]. Journal of Cleaner Production, 2018, 196: 674-681.
[66] Lokshin E, Tareeva O. Activation of leaching of rare earth elements from phosphohemihydrate [J]. Russian Journal of Applied Chemistry, 2013, 86(11): 1638-1642.
[67] 符剑刚, 钟宏, 卜向明, et al. Electro-oxidation process for molybdenum concentrates [J]. 中南工业大学学报: 英文版, 2005, 12(2): 134-139.
[68] Liu Z, Li Y, Chen M, et al. Enhanced leaching of vanadium slag in acidic solution by electro-oxidation [J]. Hydrometallurgy, 2016, 159: 1-5.
[69] Renner R. Ionic liquids: an industrial cleanup solution [J]. Environ Sci Technol, 2001, 35(19): 410A-413A.
[70] Yang F, Kubota F, Baba Y, et al. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system [J]. Journal of hazardous materials, 2013, 254-255: 79-88.
[71] Sun X, Luo H, Dai S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle [J]. Chemical reviews, 2012, 112(4): 2100-2128.
[72] Khodakarami M, Alagha L. Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups [J]. Separation and Purification Technology, 2020, 232: 115952.