多物理场作用在环境治理中的应用*

点击数:

多物理场作用在环境治理中的应用*

吴丰辉 任远川 瞿广飞# 蔡营营 李军燕 王晨朋

(昆明理工大学环境科学与工程学院,昆明 650500

 

第一作者:吴丰辉(1994),男,硕士(在读:硕士研究生)。研究方向:多物理场与环境治理。E-mail17824227221@163.com

#通信作者:瞿广飞(1979),男,博士,教授。研究方向:固废、大气、水处理。E-mail39233733@qq.com

*基金项目:“十二五”国家水体污染控制与治理科技重大专项子课题(2014ZX07105-001);国家重点研发计划课题(2018YFC1900203);国家自然科学基金地区基金(51968033);国家重点研发计划课题(2018YFC1801702);国家重点研发计划子课题(2018YFC0213403);

 

摘要 多物理场是生活中必不可少的隐存条件,肉眼不可见,但与生活息息相关,多物理场主要包括温度场、流速场,光场、磁场、电场等,是生命起源的必要条件,似乎是一种神玄论,随着社会科技的发展,研究多物理场的专家学者越来越多,多物理场在社会科技中起到了越来越重要的作用,成为一种隐形能量,多物理场在环境治理邻域的应用研究过程中,通过施加多物理场的协同作用进行水处理、大气治理、固废处理等,发现多物理场在环境治理方面有重要应用以及存在一些潜在功能;其中,多物理场在材料的合成领域成为当今最热门的研究课题之一,由于多物理场的复杂性,在目前的研究中,由于存在多场耦合现象,很难研究清楚多物理场在环境邻域的应用机理,目前只有很少的文献报道单物理场作用机理;多物理场在环境治理领域的作用机理成为研究的难题和重点,成为环境治理可操控型的前提条件和基础;多物理场这种隐形力量将成为推动环境恢复绿水青山的重要动力

关键词 材料;水处理;大气治理;固废处理;多物理场;环境治理

 

Application of multi physical field in environmental governance

WU Feng-hui, REN Yuan-chuan, QU Guang-fei*, CAI Ying-ying,LI Jun-yan, WANG Chen-peng

College of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500,Yunnan,China

Abstract: multiphysical field is an essential hidden condition in life, invisible to the naked eye, but closely related to life. Multiphysical field mainly includes temperature field, velocity field, light field, magnetic field, electric field, etc., which is a necessary condition for the origin of life. It seems to be a kind of mysticism. With the development of social science and technology, more and more experts and scholars are studying multi physical field, and multi physical field is in social science Technology plays a more and more important role and becomes a kind of invisible energy. This paper mainly discusses the application of multi physical fields in the neighborhood of environmental governance. By applying the synergy of multi physical fields to water treatment, air treatment, solid waste treatment, etc., it is found that multi physical fields have important applications and potential functions in environmental governance. Among them, multi physical fields in the material Synthesis field has become one of the most popular research topics. Due to the complexity of multi physical fields, it is difficult to study the application mechanism of multi physical fields in the environmental neighborhood due to the coupling phenomenon of multi fields in the current research. At present, only a few literatures report the single physical field mechanism. The mechanism of multi physical fields in the field of environmental governance has become a research problem and focus It will become the precondition and foundation of controllable environmental governance, and the invisible force of multi physical field will become an important driving force to promote the environment to return to green water and green mountains.

Keywords:  material water treatment air treatment solid waste treatmentmulti physical fieldenvironmental treatment

随着社会科学技术和经济的发展,多物理场的研究越来越受到重视,多物理场在各个领域的运用越来越广泛,多物理场犹如一种无形的能量,促使物质发生变化,多物理场是社会环境中不可缺少的无形能力,地球上有磁场[1],生活环境中处处存在电场[2],大气流动[3],人类生存环境的温度变化涉及到流速场和温度场[4]等,可以说,多物理场与人类生活息息相关,也是人类不可缺少的部分。在社会发展的同时,社会环境中引发发多种污染,成为困扰人类生活和生存的必要因素,水污染[5]、大气污染[6]、固废污染[7]、噪声污染[8]等物理性以及化学性污染,环境污染其实就是在多物理场的条件下,某些的物质在不该存在的地方出现,造成污染,在它该存在的地方,它就是资源。环境污染治理,主要的任务就是把某些物质在不该存在的位置移放到它应该存在的地方,即资源化利用;目前,单物理场在环境治理及环境保护中的研究相对较多,也是现在的研究热点之一,但是多物理场耦合作用在环境治理和环境保护中的应用较少;如,垃圾分类运用的磁选技术便是涉及到磁场[9],磁场在污水处理[10]方面也有一定的运用;电磁催化技术成为当今环境功能材料的合成[11]和有机废水[12]的处理成为研究热点之一,电磁催化技术在工业烟气除尘技术[13]和气体净化[14]方面研究也越来越广,由于涉及到多场耦合,大部分研究往往只涉及到单物理场的机理分析,耦合机理相对比较复杂由于这方面的分析技术相对较为落后,所以耦合机理分析发展较慢;本文主要论述多物理场在环境治理及保护中的应用,通过论述近年来多物理场在污水处理、大气处理、固废处理以及环境功能材料的合成方面的应用,提出多物理场在环境治理和保护的应用前景。

1多物理场在污水处理方面的应用

目前,常用的污水处理方法有物理方法、化学方法、生物方法[15],大部分往往涉及流速场和温度场,很少涉及电磁场,电磁场却在化工传质[16]中起到重要作用,在常用的污水处理方法中,对温度场和流速场要求比较高,若在常用的污水处理方法的基础上施加其他物理场,电场和磁场,处理效果会大大增强。

1 常见单物理场的应用

Table 1  Application of common single physical field

多物理场类别

主要运用

应用范围

温度场

MVR[17]、蒸馏[18]、冷凝[19]

去除难容物质、去除易挥发性物质等

流速场[20]

贯穿全污水处理过程

污水处理全过程

磁场

磁分离[21]、磁催化[22]、磁强化[23]

除去水中悬浮物质等

电场

电催化[24]、电分离、电捕集等[25]

除去带电物质、悬浮物等

光场

Fenton效应[26]、光催化、强化等[27]

有机物分解等

超声场[28]

超声清洗[29]、超声强化[30]、超声传质[31]

在污泥处理[28],生物处理[32],膜清洗等

由此可见,多物理场在水处理方面应用比较广泛,但是在多物理场耦合方面确实缺乏大量的研究以及作用机理分析,在水处理过程中,可以通过外加多物理场调控,选择出适合的最佳多物理场耦合以及每场得场强,达到污水处理得最佳效果和最佳处理速率,在原有得处理基础上,通过施加多物理场耦合提高处理效率,降低处理成本。

2多物理场在大气治理方面的应用

随着社会的发展,大气污染越来越严重,雾霾污染、温室效应[33]等对人类生产生活造成严重影响,造成大气污染的因素很多[34],目前常见的大气污染来源以及主要污染物如表2所示。

2 目前常见的大气污染来源以及主要污染物

Table 2  Common air pollution sources and main pollutants at present

来源

主要污染物

工业[35]

颗粒物,气溶胶类,VOCsSO2NOx,芳香族化合物以及一些有毒有害气体等

农业[35]

颗粒物,VOCsCH4H2SSO2

交通[36]

颗粒物,VOCs

在大气空气中,大部分得粒子为带电粒子,若多物理场能作为外加动力源施加于大气污染控制技术方面,并且具有良好的效果,能够大大降低大气污染治理成本,达到大气污染治理的精确调控和定向清除;在光场得作用下,会引发气态有机污染物得分解以及转化,而气态其他无机污染物在光场作用下解离,分解成活性较高离子和自由基类物质,又能氧化有机污染物,可见多物理场为大气治理提供了一个能量电源。

3多物理场在固废处理方面的应用

随着经济的快速发展,我国固体废弃物产量较大。固废主要分为城市垃圾,工业固废,以及农业固废,例如,2016年我国产生了13.5亿吨工业固体废物。该年度我国产生的废物量占东亚和太平洋地区的70%。2004年,中国超过了美国成为了世界上最大的废物产生者,而我国可能到2030年,产生的城市固体废物数量将是美国的两倍。为了促进“减少”,固体废物的“回收利用和危害最小化”,我国针对固体废物的回收制定了有针对性的计划,以便其管理。越来越多的固体废物循环利用已成为缓解环境压力的关键策略[37];目前,有关固体废物的研究主要集中在稳定化、固定化、资源化回收利用,在保证资源化、减量化、无害化处理原则的基础上,做到清洁、控制、循环和再循环、减量化、再利用;我国对固体废弃物的处理要求越来越严,各种处理技术相对不是很成熟,容易造成二次污染,多物理场可以固体废弃物处理过程中的精细调控手段,来减少处理成本,加大处理效率。

4多物理场在环境功能材料合成方面的应用

在环境功能材料合成过程中,大部分合成方法条件合成比较苛刻,特别是施加的多物理场,目前常见施加的物理场主要是温度场和压力场,在材料合成过程中还可以用“磁场诱导”策略来提高环境功能材料的电催化性能[38]。在合成特定形状和特定功能的材料过程中离不开多物理场的微观调控,如在合成离子簇过程中,如过没有物理场调控是不可能实现的。但是合成不同性质的材料需要不同的物理场调控,具体的最佳耦合条件和强度需要在材料合成过程中的调试和实验证明。

5多物理场在环境治理和保护领域的应用前景

多物理场在环境治理和环境保护中的应用相对还是较为广泛,在污水治理过程方面,温度[39]、流速[40]、压力[41]、超声[42]、光照[43]是最为常见的物理场,也是目前在污水处理过程中常见的调控手段,随着社会发展,电场和磁场在污水处理中的应用研究也逐渐成为热门研究热点之一,尽管多物理场在水处理中的应用越来越广泛,但是常见的是单物理场对污染物去除的强化作用,目前未见多物理场耦合作用对污染物去除的微观定向调控的研究,特别的电磁的强化作用较少,若在污水处理中,通过多物理场的耦合作用能够选择性的去除污水中某种污染物,并把其富集浓缩成为资源,彻底达到污水处理和资源再生,调节多物理场耦合条件和强度区分去除的物质种类,由于污染物性质不同,多物理场对污染物的影响主要是微观作用来分别去除不同种类的污染物质,切实做到零污染。同理在大气治理和固废处理中,造成污染的主要原因是不该存在物质在不该它出现的地方出现,造成污染,若能提取凝缩就可以变成很宝贵的资源,不同物质化学性质、物理性质不同,受多物理影响的强弱不同,可以通过多物理场耦合调控,达到污染物真正的资源化。

6结论

多物理场是与生活密不可分的隐形能量,社会的发展带来了许多不可逆转的环境污染,环境污染主要是某种物质引入某个环境中,达到一定的浓度和时间,使环境发生改变,破坏了生态系统结构,危害了生物和人体健康,多物理场在环境治理和保护中的应用越来越广泛,但是往往是单一的作为外加条件运用于水处理、大气治理、固体废弃物处理和材料合成过程中,许多研究表明,施加物理场对环境治理起到了积极的作用;在此基础上,提出多物理场耦合作用定向调控去除和富集污染物并资源化,有望达到零污染和污染的可逆恢复,特定功能材料和特定形状材料可以通过多物理场耦合微观调控合成,为环境治理的可操作性和材料合成的定向调控性提出了可行性的依据,为环境治理和环境保护提供了新的思路和研究方向。

 

参考文献:

[1] DREYER D, FROST B, MOURITSEN H, et al. The Earth’s Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth [J], Current Biology, 2018,28(13): 2160-2166.e5

[2] BARBOSA S. AMBIENT, et al. radioactivity and atmospheric electric field: A joint study in an urban environment [J], Journal of Environmental Radioactivity, 2020,219: 106283

[3] GUO D, ZHAO P, WANG R, et al. Numerical simulations of the flow field and pollutant dispersion in an idealized urban area under different atmospheric stability conditions [J], Process Safety and Environmental Protection, 2020,136: 310-323.

[4] RUELA R, SOUSA MC, DECASTRO M, et al. Global and regional evolution of sea surface temperature under climate change [J], Global and Planetary Change, 2020,190: 103190

[5] LU S, LI J, TANG Y, et al. Research on standard calculation method for watershed water pollution compensation [J], Science of The Total Environment, 2020: 138157.

[6] FENG H, ZOU B, WANG J, et al. Dominant variables of global air pollution-climate interaction: Geographic insight [J], Ecological Indicators, 2019,99: 251-260.

[7] LIU Y, GUO D, DONG L, et al. Pollution Status and Environmental Sound Management (ESM) Trends on Typical General Industrial Solid Waste [J], Procedia Environmental Sciences, 2016,31: 615-620.

[8] VAKILI SV, ÖlCER AI, BALLINI F. The development of a policy framework to mitigate underwater noise pollution from commercial vessels [J], Marine Policy, 2020,118: 104004.

[9] LI W, ZHENG A, LIU J, et al. Gas-assisted low-field magnetic separation for efficient recovery of contaminants-loaded magnetic nanoparticles from large volume water solution [J], Separation and Purification Technology, 2020,248: 117016.

[10] FENG X, CHEN Y, Lv J, et al. Enhanced lipid production by Chlorella pyrenoidosa through magnetic field pretreatment of wastewater and treatment of microalgae-wastewater culture solution: Magnetic field treatment modes and conditions [J], Bioresource Technology, 2020,306: 123102.

[11] KIM D-W, LM K-K, KIM HJ, et al. Effects of electromagnetic irradiation on low-molecular-weight fraction of fluidized catalytic cracking decant oil for synthesis of pitch precursor [J], Journal of Industrial and Engineering Chemistry, 2020,82: 205-210.

[12] PIYADASA C, RIDGWAY HF, YEAGER TR, et al. The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes - A review [J], Desalination, 2017,418: 19-34.

[13] ZHANG J, CHEN D, ZHA Z. Theoretical and experimental study of trapping PM2.5 particles via magnetic confinement effect in a multi-electric field ESP [J], Powder Technology, 2020,368: 70-79.

[14] GU Y, TIAN E, XIA F, et al. A new pin-to-plate corona discharger with clean air protection for particulate matter removal [J], Energy and Built Environment, 2020,1(1): 87-92.

[15] 熊蓉春, 董雪玲, 魏刚. 绿色化学与21世纪水处理剂发展战略 [J], 环境工程, 2000,(02): 22-24+49+3.

[16] AHANGAR ZONOUZI S, AMINFARr H, MOHAMMADPOURFARD M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF [J], Applied Thermal Engineering, 2019,151: 11-25.

[17] GAO X, GU Q, MA J, et al. MVR heat pump distillation coupled with ORC process for separating a benzene-toluene mixture [J], Energy, 2018,143: 658-665.

[18] REDDY KS, SHARON H, KRITTHIKA D, et al. Performance, water quality and enviro-economic investigations on solar distillation treatment of reverse osmosis reject and sewage water [J], Solar Energy, 2018,173: 160-172.

[19] SCHNELL M, HORST T, QUICKER P. Thermal treatment of sewage sludge in Germany: A review [J], Journal of Environmental Management, 2020,263: 110367.

[20] DEL-PILAR-RUSO Y, DE-LA-OSSA-CARRETEERO JA, GIMENEZ-CASALDUERO F, et al. Sewage treatment level and flow rates affect polychaete assemblages [J], Marine Pollution Bulletin, 2010,60(11): 1930-1938.

[21] PROT T, NGUYEN VH, WILFERT P, et al. Magnetic separation and characterization of vivianite from digested sewage sludge [J], Separation and Purification Technology, 2019,224: 564-579.

[22] ABOU HAMMAD AB, HEMDAN BA, El NAHRAWY AM. Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment [J], Journal of Environmental Management, 2020,270: 110816.

[23] LIU Y, JIN W, ZHOU X, et al. Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe3O4 coated with polyethyleneimine [J], Bioresource Technology, 2019,290: 121771.

[24] FAN T, DENG W, FENG X, et al. An integrated electrocoagulation – Electrocatalysis water treatment process using stainless steel cathodes coated with ultrathin TiO2 nanofilms [J], Chemosphere, 2020,254: 126776.

[25] BOUKHCHINA S, AKROUT H, BERLING D, et al. Highly efficient modified lead oxide electrode using a spin coating/electrodeposition mode on titanium for electrochemical treatment of pharmaceutical pollutant [J], Chemosphere, 2019,221: 356-365.

[26] BAUTITZ IR, NOGUEITA RFP. Photodegradation of lincomycin and diazepam in sewage treatment plant effluent by photo-Fenton process [J], Catalysis Today, 2010,151(1): 94-99.

[27] ZHU X, YUAN W, LANG M, et al. Novel methods of sewage sludge utilization for photocatalytic degradation of tetracycline-containing wastewater [J], Fuel, 2019,252: 148-156.

[28] BANDELIN J, LIPPERT T, DREWES JE, et al. Assessment of sonotrode and tube reactors for ultrasonic pre-treatment of two different sewage sludge types [J], Ultrasonics Sonochemistry, 2020,64: 105001.

[29] BAZAN MA, CARPINRERO-TEPOLE V, BRITO-DE LA FUENTE E, et al. On the use of ultrasonic dental scaler tips as cleaning technique of microfiltration ceramic membranes [J], Ultrasonics, 2020,101: 106035.

[30] WENJING L, CHAO P, LAMA A, et al. Effect of pre-treatments on biological methane potential of dewatered sewage sludge under dry anaerobic digestion [J], Ultrasonics Sonochemistry, 2019,52: 224-231.

[31] SAFRONOVA EY, POURCELLY G, YAROSLAVTSEV AB. The transformation and degradation of Nafion® solutions under ultrasonic treatment. The effect on transport and mechanical properties of the resultant membranes [J], Polymer Degradation and Stability, 2020,178: 109229.

[32] HUANG J, LIANG J, YANG X, et al. Ultrasonic coupled bioleaching pretreatment for enhancing sewage sludge dewatering: Simultaneously mitigating antibiotic resistant genes and changing microbial communities [J], Ecotoxicology and Environmental Safety, 2020,193: 110349.

[33] OKTYABRSKIY VP. A new opinion of the greenhouse effect [J], St Petersburg Polytechnical University Journal: Physics and Mathematics, 2016,2(2): 124-126.

[34] SHI T, ZHANG W, ZHOU Q, et al. Industrial structure, urban governance and haze pollution: Spatiotemporal evidence from China [J], Science of The Total Environment, 2020: 139228.

[35] WANG Z, WEI W, ZhENG F. Effects of industrial air pollution on the technical efficiency of agricultural production: Evidence from China [J], Environmental Impact Assessment Review, 2020,83: 106407.

[36] KHAN J, KAKOSIMOS K, JENSEN SS, et al. The spatial relationship between traffic-related air pollution and noise in two Danish cities: Implications for health-related studies [J], Science of The Total Environment, 2020,726: 138577.

[37] HUANG Q, CHEN G, WANG Y, et al. Identifying the socioeconomic drivers of solid waste recycling in China for the period 2005–2017 [J], Science of The Total Environment, 2020,725: 138137.

[38] LI Y, ZHANG L, PENG J, et al. Magnetic field enhancing electrocatalysis of Co3O4/NF for oxygen evolution reaction [J], Journal of Power Sources, 2019,433:

[39] WATANABE R, NIE Y, WAKAHARA S, et al. Investigation on the response of anaerobic membrane bioreactor to temperature decrease from 25°C to 10°C in sewage treatment [J], Bioresource Technology, 2017,243: 747-754

[40] HEWAWASAM C, MATSUURA N, TAKIMOTO Y, et al. Optimization of rotational speed and hydraulic retention time of a rotational sponge reactor for sewage treatment [J], Journal of Environmental Management, 2018,222: 155-163.

[41] HII K, PARTHASARATHY R, BAROUTIAN S, et al. Rheological measurements as a tool for monitoring the performance of high pressure and high temperature treatment of sewage sludge [J], Water Research, 2017,114: 254-263.

[42] ZHANG G, HE J, ZHANG P, et al. Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment [J], Journal of Hazardous Materials, 2009,164(2): 1105-1109.

[43] HE H, LUO N, HUANG B, et al. Optical characteristics and cytotoxicity of dissolved organic matter in the effluent and sludge from typical sewage treatment processes [J], Science of The Total Environment, 2020,725: 138381


 版权所有 © 昆明理工大学  技术支持:信息化建设管理中心